Nature

Hominini-specific regulation of CBLN2 increases prefrontal spinogenesis

  • 1.

    Finlay, B. L. & Darlington, R. B. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 2.

    Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 3.

    Krubitzer, L. & Kaas, J. The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr. Opin. Neurobiol. 15, 444–453 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Passingham, R. E. & Wise, S. P. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight (Oxford Univ. Press, 2015).

  • 5.

    Elston, G. N. et al. Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288, 26–35 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Semendeferi, K. et al. Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb. Cortex 21, 1485–1497 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Kwan, K. Y. et al. Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell 149, 899–911 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 8.

    Gabi, M. et al. No relative expansion of the number of prefrontal neurons in primate and human evolution. Proc. Natl Acad. Sci. USA 113, 9617–9622 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    Caceres, M. et al. Elevated gene expression levels distinguish human from non-human primate brains. Proc. Natl Acad. Sci. USA 100, 13030–13035 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 10.

    Khaitovich, P. et al. Regional patterns of gene expression in human and chimpanzee brains. Genome Res. 14, 1462–1473 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 11.

    Uddin, M. et al. Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles. Proc. Natl Acad. Sci. USA 101, 2957–2962 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 12.

    Konopka, G. et al. Human-specific transcriptional networks in the brain. Neuron 75, 601–617 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Bauernfeind, A. L. et al. Evolutionary divergence of gene and protein expression in the brains of humans and chimpanzees. Genome Biol. Evol. 7, 2276–2288 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Sousa, A. M. M. et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science 358, 1027–1032 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 15.

    Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 16.

    Pollen, A. A. et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176, 743–756 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 18.

    Johnson, M. B. et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62, 494–509 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Pletikos, M. et al. Temporal specification and bilaterality of human neocortical topographic gene expression. Neuron 81, 321–332 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 20.

    Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 21.

    Urade, Y. et al. Precerebellin is a cerebellum-specific protein with similarity to the globular domain of complement C1q B chain. Proc. Natl Acad. Sci. USA 88, 1069–1073 (1991).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 22.

    Hirai, H. et al. Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat. Neurosci. 8, 1534–1541 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 23.

    Uemura, T. et al. Trans-synaptic interaction of GluRδ2 and neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141, 1068–1079 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Matsuda, K. et al. Cbln1 is a ligand for an orphan glutamate receptor δ2, a bidirectional synapse organizer. Science 328, 363–368 (2010).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 25.

    Yasumura, M. et al. Glutamate receptor delta1 induces preferentially inhibitory presynaptic differentiation of cortical neurons by interacting with neurexins through cerebellin precursor protein subtypes. J. Neurochem. 121, 705–716 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Wei, P. et al. The Cbln family of proteins interact with multiple signaling pathways. J. Neurochem. 121, 717–729 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Seigneur, E. & Sudhof, T. C. Genetic ablation of all cerebellins reveals synapse organizer functions in multiple regions throughout the brain. J. Neurosci. 38, 4774–4790 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 28.

    Elston, G. N. Pyramidal cells of the frontal lobe: all the more spinous to think with. J. Neurosci. 20, RC95 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 29.

    Jacobs, B. et al. Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. Cereb. Cortex 11, 558–571 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 30.

    Bianchi, S. et al. Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. Proc. Natl Acad. Sci. USA 110, 10395–10401 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 31.

    Molliver, M. E. et al. The development of synapses in cerebral cortex of the human fetus. Brain Res. 50, 403–407 (1973).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 32.

    Voigt, T. et al. Synaptophysin immunohistochemistry reveals inside-out pattern of early synaptogenesis in ferret cerebral cortex. J. Comp. Neurol. 330, 48–64 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Rakic, P. et al. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235 (1986).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 34.

    Shibata, M. et al. Regulation of prefrontal patterning and connectivity by retinoic acid. Nature https://doi.org/10.1038/s41586-021-03953-x (2021).

  • 35.

    Kang, H. J. et al. Spatiotemporal transcriptome of the human brain. Nature 478, 483–489 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 36.

    Lambert, N. et al. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution. PLoS ONE 6, e17753 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 37.

    Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 38.

    ENCODE Project Consortium et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Chiang, M. Y. et al. An essential role for retinoid receptors RARβ and RXRγ in long-term potentiation and depression. Neuron 21, 1353–1361 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Krezel, W. et al. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 279, 863–867 (1998).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 41.

    Kwan, K. Y. et al. SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc. Natl Acad. Sci. USA 105, 16021–16026 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 42.

    Shim, S. et al. Cis-regulatory control of corticospinal system development and evolution. Nature 486, 74–79 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 43.

    Clarke, R. A. & Eapen, V. Balance within the neurexin trans-synaptic connexus stabilizes behavioral control. Front. Hum. Neurosci. 8, 52 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 44.

    State, M. W. & Sestan, N. The emerging biology of autism spectrum disorders. Science 337, 1301–1303 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 45.

    Sudhof, T. C. Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell 171, 745–769 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 46.

    Willsey, A. J. et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155, 997–1007 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 47.

    Gulsuner, S. et al. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154, 518–529 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 48.

    Lewis, D. A. & Mirnics, K. Transcriptome alterations in schizophrenia: disturbing the functional architecture of the dorsolateral prefrontal cortex. Prog. Brain Res. 158, 141–152 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 49.

    Dy, P., Han, Y. & Lefebvre, V. Generation of mice harboring a Sox5 conditional null allele. Genesis 46, 294–299 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 50.

    Mathelier, A. et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 44, D110–D115 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 51.

    Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 52.

    Shim, S. et al. Regulation of EphA8 gene expression by TALE homeobox transcription factors during development of the mesencephalon. Mol. Cell. Biol. 27, 1614–1630 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 53.

    Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 54.

    Liu, P. et al. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 55.

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 56.

    Wilkinson, D. G. & Nieto, M. A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361–373 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 57.

    Hunt, C. A. et al. PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J. Neurosci. 16, 1380–1388 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 58.

    Essrich, C. et al. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nat. Neurosci. 1, 563–571 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 59.

    Ippolito, D. M. & Eroglu, C. Quantifying synapses: an immunocytochemistry-based assay to quantify synapse number. J. Vis. Exp. 45, 2270 (2010).


    Google Scholar
     

  • 60.

    Fiala, J. C. Reconstruct: a free editor for serial section microscopy. J. Microsc. 218, 52–61 (2005).

    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 61.

    Risher, W. C. et al. Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines. PLoS ONE 9, e107591 (2014).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 62.

    Kaur, N. et al. Neural stem cells direct axon guidance via their radial fiber scaffold. Neuron 107, 1197–1211 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 63.

    Meijering, E. et al. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 58, 167–176 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 64.

    Hinrichs, A. S. et al. The UCSC Genome Browser database: update 2006. Nucleic Acids Res. 34, D590–D598 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 65.

    Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24-26 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 67.

    Rosenbloom, K. R. et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 41, D56–D63 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 68.

    Shibata, M. et al. MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J. Neurosci. 31, 3407–3422 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 69.

    Morozov, Y. M., Ayoub, A. E. & Rakic, P. Translocation of synaptically connected interneurons across the dentate gyrus of the early postnatal rat hippocampus. J. Neurosci. 26, 5017–5027 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 70.

    Morozov, Y. M., Mackie, K. & Rakic, P. Cannabinoid type 1 receptor is undetectable in rodent and primate cerebral neural stem cells but participates in radial neuronal migration. Int. J. Mol. Sci. 21, 1–19 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 71.

    Thompson, C. L. et al. A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. Neuron 83, 309–323 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    How 4 Million Fossils Are Excavated At La Brea Tar Pits | Colossal Collections | Science Insider
    The Large Hadron Collider is a Marvel of Engineering | NASA’s Unexplained Files
    Quick Charge Podcast: October 1, 2022
    New Supercontinent “Amasia” Will Form in 200 Million Years, Pacific Ocean Will Close —Simulation Shows
    NASA Says Artemis I October Launch Will Be ‘Difficult’, Shelters SLS Rocket From Hurricane Ian

    Leave a Reply

    Your email address will not be published.