Nature

Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar

  • Baker, V. R. Water and the Martian landscape. Nature 412, 228–236 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boynton, W. et al. Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297, 81–85 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E. & Marchant, D. R. Recent ice ages on Mars. Nature 426, 797–802 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Byrne, S. et al. Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 1674–1676 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Audouard, J. et al. Water in the Martian regolith from OMEGA/Mars Express. J. Geophys. Res. Planets 119, 1969–1989 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Holt, J. W. et al. Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322, 1235–1238 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Orosei, R. et al. Radar evidence of subglacial liquid water on Mars. Science 361, 490–493 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Picardi, G. et al. Radar soundings of the subsurface of Mars. Science 310, 1925–1928 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamran, S.-E. et al. Radar imager for Mars’ subsurface experiment—RIMFAX. Space Sci. Rev. 216, 128 (2020).

    ADS 

    Google Scholar
     

  • Zhou, B. et al. The Mars rover subsurface penetrating radar onboard China’s Mars 2020 mission. Earth and Planetary Physics 4, 345–354 (2020).

    ADS 

    Google Scholar
     

  • Sholes, S. F., Dickeson, Z. I., Montgomery, D. R. & Catling, D. C. Where are Mars’ hypothesized ocean shorelines? Large lateral and topographic offsets between different versions of paleoshoreline maps. J. Geophys. Res. Planets 126, e2020JE006486 (2021).

    ADS 

    Google Scholar
     

  • Kreslavsky, M. A. & Head, J. W. Fate of outflow channel effluents in the northern lowlands of Mars: the Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water. J. Geophys. Res. Planets 107, 4.1–4.25 (2002).


    Google Scholar
     

  • Tanaka, K. L., Skinner, J. A., Hare, T. M., Joyal, T. & Wenker, A. Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data. J. Geophys. Res. Planets 108, 8043 (2003).

  • Fa, W., Zhu, M., Liu, T. & Plescia, J. B. Regolith stratigraphy at the Chang’E‐3 landing site as seen by lunar penetrating radar. Geophys. Res. Lett. 42, 10–179 (2015).


    Google Scholar
     

  • Xiao, L. et al. A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission. Science 347, 1226–1229 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Volcanic history of the Imbrium basin: a close-up view from the lunar rover Yutu. Proc. Natl Acad. Sci. USA 112, 5342–5347 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Lunar regolith and substructure at Chang’E-4 landing site in South Pole–Aitken basin. Nat. Astron. 5, 25–30 (2021).

    ADS 

    Google Scholar
     

  • Tanaka, K. L. et al. Geologic Map of Mars: US Geological Survey Scientific Investigations Map 3292 Pamphlet 43 (US Geological Survey, 2014).

  • Tanaka, K. L. & Scott, D. H. Geologic Map of the Polar Regions of Mars (US Geological Survey, 1987).

  • Hiesinger, H. & Head III, J. W. Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: results from Mars Orbiter laser altimeter and Mars Orbiter camera data. J. Geophys. Res. Planets 105, 11999–12022 (2000).

    ADS 

    Google Scholar
     

  • Ivanov, M. A., Hiesinger, H., Erkeling, G. & Reiss, D. Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: evidence for the ancient ocean. Icarus 228, 121–140 (2014).

    ADS 

    Google Scholar
     

  • Mills, M. M., McEwen, A. S. & Okubo, C. H. A preliminary regional geomorphologic map in Utopia Planitia of the Tianwen‐1 Zhurong landing region. Geophys. Res. Lett. 48, e2021GL094629 (2021).

    ADS 

    Google Scholar
     

  • Wu, X. et al. Geological characteristics of China’s Tianwen-1 landing site at Utopia Planitia, Mars. Icarus 370, 114657 (2021).


    Google Scholar
     

  • Ye, B. et al. Geomorphologic exploration targets at the Zhurong landing site in the southern Utopia Planitia of Mars. Earth Planet. Sci. Lett. 576, 117199 (2021).

    CAS 

    Google Scholar
     

  • Zhao, J. et al. Geological characteristics and targets of high scientific interest in the Zhurong landing region on Mars. Geophys. Res. Lett. 48, e2021GL094903 (2021).

  • Platz, T. & Michael, G. Eruption history of the Elysium volcanic province, Mars. Earth Planet. Sci. Lett. 312, 140–151 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Susko, D. et al. A record of igneous evolution in Elysium, a major Martian volcanic province. Sci. Rep. 7, 43177 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russell, P. S. & Head, J. W. Elysium‐Utopia flows as mega‐lahars: a model of dike intrusion, cryosphere cracking, and water‐sediment release. J. Geophys. Res. Planets 108, 5064 (2003).

  • Hobiger, M. et al. The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations. Nat. Commun. 12, 6756 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mouginot, J., Pommerol, A., Beck, P., Kofman, W. & Clifford, S. M. Dielectric map of the Martian northern hemisphere and the nature of plain filling materials. Geophys. Res. Lett. 39, L02202 (2012).

  • Garvin, J., Sakimoto, S. & Frawley, J. Craters on Mars: global geometric properties from gridded MOLA topography. Sixth Int. Conf. on Mars abstr. 3277 (2003); http://www.lpi.usra.edu/meetings/sixthmars2003/pdf/3277.pdf

  • Clifford, S. M. A model for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res. Planets 98, 10973–11016 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • McQueen, K. G. & Scott, K. M. Rock weathering and structure of the regolith. Regolith Sci. 1, 105–126 (2008).


    Google Scholar
     

  • Golombek, M. et al. Geology of the InSight landing site on Mars. Nat. Commun. 11, 1014 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu, S., Zhang, F., Di, K., Gou, S. & Yue, Z. Layered ejecta craters in the candidate landing areas of China’s first Mars mission (Tianwen-1): implications for subsurface volatile concentrations. J. Geophys. Res. Planets 127, e2021JE007089 (2022).

    ADS 

    Google Scholar
     

  • Forget, F., Haberle, R., Montmessin, F., Levrard, B. & Head, J. Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311, 368–371 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Levy, J. S. et al. Surface boulder banding indicates Martian debris-covered glaciers formed over multiple glaciations. Proc. Natl Acad. Sci. USA 118, e2015971118 (2021).

  • Chevrier, V. F., Rivera-Valentín, E. G., Soto, A. & Altheide, T. S. Global temporal and geographic stability of brines on present-day Mars. Planetary Sci. J. 1, 64 (2020).

    ADS 

    Google Scholar
     

  • Mellon, M. T. et al. Ground ice at the Phoenix landing site: stability state and origin. J. Geophys. Res. Planets 114, E00E07 (2009).

  • Vincendon, M. et al. Near-tropical subsurface ice on Mars. Geophys. Res. Lett. 37, L01202 (2010).

  • Morgan, G. A. et al. Availability of subsurface water-ice resources in the northern mid-latitudes of Mars. Nat. Astron. 5, 230–236 (2021).

    ADS 

    Google Scholar
     

  • Mellon, M. T. & Sizemore, H. G. The history of ground ice at Jezero Crater Mars and other past, present, and future landing sites. Icarus 371, 114667 (2022).


    Google Scholar
     

  • Liu, Y. & Li, B. Streaming orthogonal prediction filter in the t-x domain for random noise attenuation. Geophysics 83, F41–F48 (2018).


    Google Scholar
     

  • Li, C. & Zhang, J. Velocity analysis using separated diffractions for lunar penetrating radar obtained by Yutu-2 rover. Remote Sens. 13, 1387 (2021).

    ADS 

    Google Scholar
     

  • Fomel, S., Landa, E. & Taner, M. T. Poststack velocity analysis by separation and imaging of seismic diffractions. Geophysics 72, U89–U94 (2007).

    ADS 

    Google Scholar
     

  • Decker, L., Merzlikin, D. & Fomel, S. Diffraction imaging and time-migration velocity analysis using oriented velocity continuation. Geophysics 82, U25–U35 (2017).

    ADS 

    Google Scholar
     

  • Giannakis, I., Zhou, F., Warren, C. & Giannopoulos, A. Inferring the shallow layered structure at the Chang’E‐4 landing site: a novel interpretation approach using lunar penetrating radar. Geophys. Res. Lett. 48, e2021GL092866 (2021).

    ADS 

    Google Scholar
     

  • Chen, Z., Fomel, S. & Lu, W. Accelerated plane-wave destruction. Geophysics 78, V1–V9 (2013).

    ADS 

    Google Scholar
     

  • Fomel, S. Applications of plane-wave destruction filters. Geophysics 67, 1946–1960 (2002).

    ADS 

    Google Scholar
     

  • Lv, W., Li, C., Song, H., Zhang, J. & Lin, Y. Comparative analysis of reflection characteristics of lunar penetrating radar data using numerical simulations. Icarus 350, 113896 (2020).


    Google Scholar
     

  • Zhang, X. et al. Self-organization characteristics of lunar regolith inferred by Yutu-2 lunar penetrating radar. Remote Sens. 13, 3017 (2021).

    ADS 

    Google Scholar
     

  • Lai, J. et al. First look by the Yutu-2 rover at the deep subsurface structure at the lunar farside. Nat. Commun. 11, 3426 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mühll, D. V. & Haeberli, W. Thermal characteristics of the permafrost within an active rock glacier (Murtèl/Corvatsch, Grisons, Swiss Alps). J. Glaciol. 36, 151–158 (1990).

    ADS 

    Google Scholar
     

  • Sun, Q. et al. Thermal properties of sandstone after treatment at high temperature. Int. J. Rock Mech. Min. Sci. 85, 60–66 (2016).


    Google Scholar
     

  • Egea-Gonzalez, I. et al. Regional heat flow and subsurface temperature patterns at Elysium Planitia and Oxia Planum areas, Mars. Icarus 353, 113379 (2021).


    Google Scholar
     

  • Parro, L. M., Jiménez-Díaz, A., Mansilla, F. & Ruiz, J. Present-day heat flow model of Mars. Sci. Rep. 7, 45629 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forget, F. et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. Planets 104, 24155–24175 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Grott, M. et al. Thermal conductivity of the Martian soil at the InSight landing site from HP3 active heating experiments. J. Geophys. Res. Plants 126, e2021JE006861 (2021).

    ADS 

    Google Scholar
     

  • Bandfield, J. L. & Feldman, W. C. Martian high latitude permafrost depth and surface cover thermal inertia distributions. J. Geophys. Res. Planets 113, E08001 (2008).

  • Möhlmann, D. & Thomsen, K. Properties of cryobrines on Mars. Icarus 212, 123–130 (2011).

    ADS 

    Google Scholar
     

  • Martín-Torres, F. J. et al. Transient liquid water and water activity at Gale crater on Mars. Nat. Geosci. 8, 357–361 (2015).

    ADS 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    Parking lots are becoming as important as cars in climate change efforts
    Pupating ants make milk — and scientists only just noticed
    Why The Octopus Is The Weirdest Animal On Earth
    Effective Climate Actions Needed Against Major Fire Threats to Global Forests, Research Shows
    Episode 342: Real estate sustainability meets EV charging, Trillium talks ESG

    Leave a Reply

    Your email address will not be published. Required fields are marked *