Nature

Observation of fractional edge excitations in nanographene spin chains

  • 1.

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Laughlin, R. B. Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Jackiw, R. & Rebbi, C. Solitons with fermion number 1/2. Phys. Rev. D 13, 3398–3409 (1976).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in Polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Kitaev, A. Unpaired Majorana fermions in quantum wires. Phys.-Uspekhi 44, 131–136 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Haldane, F. D. M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153–1156 (1983).

    MathSciNet 
    Article 

    Google Scholar
     

  • 7.

    Affleck, I., Kennedy, T., Lieb, E. H. & Tasaki, H. Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Kennedy, T. Exact diagonalisations of open spin-1 chains. J. Phys. Condens. Matter 2, 5737–5745 (1990).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    White, S. R. & Huse, D. A. Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic S=1 Heisenberg chain. Phys. Rev. B 48, 3844–3852 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Gu, Z.-C. & Wen, X.-G. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B 80, 155131 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 11.

    Pollmann, F., Berg, E., Turner, A. M. & Oshikawa, M. Symmetry protection of topological phases in one-dimensional quantum spin systems. Phys. Rev. B 85, 075125 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 12.

    Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Wei, T.-C., Affleck, I. & Raussendorf, R. Two-dimensional Affleck-Kennedy-Lieb-Tasaki state on the honeycomb lattice is a universal resource for quantum computation. Phys. Rev. A 86, 032328 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 14.

    Bethe, H. Zur Theorie der Metalle. Z. Physik 71, 205–226 (1931).

    ADS 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • 15.

    Renard, J.-P., Regnault, L.-P. & Verdaguer, M. in Magnetism: Molecules to Materials I: Models and Experiments (eds. Miller, J. S. & Drillon, M.) 49–93 (John Wiley & Sons, 2001).

  • 16.

    Soe, W.-H., Manzano, C., De Sarkar, A., Chandrasekhar, N. & Joachim, C. Direct observation of molecular orbitals of pentacene physisorbed on Au(111) by scanning tunneling microscope. Phys. Rev. Lett. 102, 176102 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 17.

    Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Choi, D.-J. et al. Colloquium: atomic spin chains on surfaces. Rev. Mod. Phys. 91, 041001 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Toskovic, R. et al. Atomic spin-chain realization of a model for quantum criticality. Nat. Phys. 12, 656–660 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Yang, K. et al. Probing resonating valence bond states in artificial quantum magnets. Nat. Commun. 12, 993 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Delgado, F., Batista, C. D. & Fernández-Rossier, J. Local probe of fractional edge states of S = 1 Heisenberg spin chains. Phys. Rev. Lett. 111, 167201 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 23.

    Fernández-Rossier, J. & Palacios, J. J. Magnetism in graphene nanoislands. Phys. Rev. Lett. 99, 177204 (2007).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 24.

    Clar, E. & Stewart, D. G. Aromatic hydrocarbons. LXV. Triangulene derivatives1. J. Am. Chem. Soc. 75, 2667–2672 (1953).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Goto, K. et al. A stable neutral hydrocarbon radical:  synthesis, crystal structure, and physical properties of 2,5,8-tri-tert-butyl-phenalenyl. J. Am. Chem. Soc. 121, 1619–1620 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Inoue, J. et al. The first detection of a Clar’s hydrocarbon, 2,6,10-tri-tert-butyltriangulene: a ground-state triplet of non-Kekulé polynuclear benzenoid hydrocarbon. J. Am. Chem. Soc. 123, 12702–12703 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Pavliček, N. et al. Synthesis and characterization of triangulene. Nat. Nanotechnol. 12, 308–311 (2017).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 28.

    Mishra, S. et al. Synthesis and characterization of π-extended triangulene. J. Am. Chem. Soc. 141, 10621–10625 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Su, J. et al. Atomically precise bottom-up synthesis of π-extended [5]triangulene. Sci. Adv. 5, eaav7717 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    Mishra, S. et al. Synthesis and characterization of [7]triangulene. Nanoscale 13, 1624–1628 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Mishra, S. et al. Collective all-carbon magnetism in triangulene dimers. Angew. Chem. Int. Ed. 59, 12041–12047 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Lado, J. L. & Fernández-Rossier, J. Magnetic edge anisotropy in graphenelike honeycomb crystals. Phys. Rev. Lett. 113, 027203 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Ternes, M., Heinrich, A. J. & Schneider, W.-D. Spectroscopic manifestations of the Kondo effect on single adatoms. J. Phys. Condens. Matter 21, 053001 (2008).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 34.

    Li, J. et al. Single spin localization and manipulation in graphene open-shell nanostructures. Nat. Commun. 10, 200 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 35.

    Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 15, 22–28 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Ortiz, R. & Fernández-Rossier, J. Probing local moments in nanographenes with electron tunneling spectroscopy. Progr. Surf. Sci. 95, 100595 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Oberg, J. C. et al. Control of single-spin magnetic anisotropy by exchange coupling. Nat. Nanotechnol. 9, 64–68 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Jacob, D., Ortiz, R. & Fernández-Rossier, J. Renormalization of spin excitations and Kondo effect in open-shell nanographenes. Phys. Rev. B 104, 075404 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 39.

    Li, J. et al. Uncovering the triplet ground state of triangular graphene nanoflakes engineered with atomic precision on a metal surface. Phys. Rev. Lett. 124, 177201 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 41.

    Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Hieulle et al. [PLACEHOLDER]. Angew. Chem. Int. Ed. Engl.https://doi.org/10.1002/anie202108301 (2021).

  • 43.

    Giannozzi, P. et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152, 154105 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 44.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 45.

    Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 46.

    Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 48.

    Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 49.

    VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 50.

    Wilhelm, J., Del Ben, M. & Hutter, J. GW in the Gaussian and plane waves scheme with application to linear acenes. J. Chem. Theory Comput. 12, 3623–3635 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 51.

    Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 52.

    Kharche, N. & Meunier, V. Width and crystal orientation dependent band gap renormalization in substrate-supported graphene nanoribbons. J. Phys. Chem. Lett. 7, 1526–1533 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 53.

    Yakutovich, A. V. et al. AiiDAlab – an ecosystem for developing, executing, and sharing scientific workflows. Comput. Mater. Sci. 188, 110165 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 54.

    Ortiz, R. et al. Exchange rules for diradical π-conjugated hydrocarbons. Nano Lett. 19, 5991–5997 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 55.

    Tran, V.-T., Saint-Martin, J., Dollfus, P. & Volz, S. Third nearest neighbor parameterized tight binding model for graphene nano-ribbons. AIP Adv. 7, 075212 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 56.

    Fishman, M., White, S. R. & Stoudenmire, E. M. The ITensor software library for tensor network calculations. Preprint at https://arxiv.org/abs/2007.14822 (2020).

  • 57.

    Weinberg, P. & Bukov, M. QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems part I: spin chains. SciPost Phys. 2, 003 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 58.

    Weinberg, P. & Bukov, M. QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: bosons, fermions and higher spins. SciPost Phys. 7, 020 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 59.

    Fernández-Rossier, J. Theory of single-spin inelastic tunneling spectroscopy. Phys. Rev. Lett. 102, 256802 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 60.

    Spinelli, A., Bryant, B., Delgado, F., Fernández-Rossier, J. & Otte, A. F. Imaging of spin waves in atomically designed nanomagnets. Nat. Mater. 13, 782–785 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 61.

    Coleman, P. New approach to the mixed-valence problem. Phys. Rev. B 29, 3035–3044 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 62.

    Jacob, D. & Kurth, S. Many-body spectral functions from steady state density functional theory. Nano Lett. 18, 2086–2090 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 63.

    Jacob, D. Simulation of inelastic spin flip excitations and Kondo effect in STM spectroscopy of magnetic molecules on metal substrates. J. Phys. Condens. Matter 30, 354003 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 64.

    Jacob, D. & Fernández-Rossier, J. Competition between quantum spin tunneling and Kondo effect. Eur. Phys. J. B 89, 210 (2016).

    ADS 
    MathSciNet 
    Article 
    CAS 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    SES-led group to deploy quantum security satellite for Europe in 2024
    Researchers in Southern Ethiopia Deciphers of How Climate Change Affects Human Evolution in Eastern Africa
    New York AG wrongly said Yankees game on Apple TV+ costs extra — but it’s free
    China’s CATL, a Tesla supplier, considers expanding battery swapping business overseas
    How an oil fracking boom to bust startup plans to thrive in the climate change era

    Leave a Reply

    Your email address will not be published.